УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «12» января 2022 г. № 48

Лист № 1 Всего листов 11

Регистрационный № 17023-08

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители-регуляторы микропроцессорные 2TPM0, 2TPM1, TPM10, TPM12

Назначение средства измерений

Измерители-регуляторы микропроцессорные 2ТРМ0, 2ТРМ1, ТРМ1, ТРМ10, ТРМ12 (далее – приборы) предназначены для измерений И автоматического регулирования температуры (при использовании качестве первичных преобразователей термопреобразователей сопротивления или термоэлектрических преобразователей), а также других физических параметров (давления, влажности, расхода, уровня и т.п.), значение которых первичными преобразователями (датчиками) может быть преобразовано в напряжение постоянного тока или унифицированный электрический сигнал силы постоянного тока, в единицах измерения физической величины или в процентах от максимального значения диапазона измерений.

Описание средства измерений

Принцип действия приборов основан на измерении и преобразовании входных сигналов, получаемых от первичных преобразователей различных физических величин, в цифровую форму с помощью аналого-цифрового преобразователя (АЦП), с дальнейшей их обработкой микропроцессором и последующем отображении результатов измерений на цифровом индикаторе, а также, в зависимости от исполнения приборов, преобразовании на цифро-аналоговом преобразователе (ЦАП) входного сигнала в аналоговый сигнал силы или напряжения постоянного тока. В зависимости от значения измеренного сигнала приборы могут осуществлять регулирование значения физической величины за счет управления различными исполнительными устройствами.

Конструктивно приборы выполнены в пластмассовых корпусах для щитового крепления (четырех типов), настенного крепления (двух типов) и монтажа на DIN-рейку. На лицевой панели приборов размещены цифровые индикаторы (1 индикатор – для исполнения с типом входа и исполнением индикации У; 2 индикатора – для исполнений с типом входа и исполнением индикации У2 и У3) с управляющими кнопками. Клеммы для внешнего подключения расположены на задней панели у приборов для щитового крепления и на передней у приборов для монтажа на DIN-рейку.

Приборы имеют несколько моделей и выпускаются в различных исполнениях, отличающихся количеством входных (выходных) каналов измерения и (или) регулирования, типом корпуса, исполнением индикации, наличием либо отсутствием интерфейсного выхода RS-485, климатическим исполнением.

В каждом канале выполняются функции двух-, трехпозиционного регулирования, либо пропорционально – интегрально – дифференциального (ПИД) регулирования.

Выходными сигналами приборов являются: состояния контактов электромагнитных реле, симисторных ключей, транзисторных ключей, унифицированные сигналы силы или напряжения постоянного тока.

Структура условного обозначения исполнений приборов представлена на рисунке 1.



Рисунок 1 – Структура условного обозначения исполнений приборов

Модель прибора:

2TPM0 – измеритель микропроцессорный двухканальный (с двумя каналами измерения без выходных каналов регулирования);

2TPM1 — измеритель-регулятор микропроцессорный двухканальный (с двумя каналами измерения и регулирования);

TPM1 — измеритель-регулятор микропроцессорный одноканальный (с одним каналом измерения и регулирования);

TРМ10 — измеритель ПИД-регулятор микропроцессорный одноканальный (с одним каналом измерения и регулирования);

ТРМ12 – измеритель ПИД-регулятор микропроцессорный (с одним каналом измерения и регулирования для управления задвижками с электроприводом с типом входа и исполнением индикации У и с двумя каналами измерения и регулирования для управления задвижками с электроприводом с типом входа и исполнением индикации У2 и У3).

Тип корпуса:

Н – корпус для настенного крепления;

Н2 – корпус для настенного крепления;

Щ1 – корпус для щитового крепления;

Щ2 – корпус для щитового крепления;

Щ5 – корпус для щитового крепления;

Щ11 – корпус для щитового крепления;

Д – корпус для крепления на DIN – рейку.

Тип входа и исполнение индикации:

У — универсальный измерительный вход, один 4-х разрядный светодиодный цифровой индикатор красного цвета;

У2 — универсальный измерительный вход, два 4-х разрядных светодиодных цифровых индикатора красного цвета;

УЗ – универсальный измерительный вход, два 4-х разрядных светодиодных цифровых индикатора зеленого цвета.

Тип выхода:

Р – реле электромагнитное;

К – оптопара транзисторная п–р–п-типа;

С – оптопара симисторная;

И — цифро-аналоговый преобразователь «диапазон аналогового выходного сигнала силы постоянного тока от 4 до 20 мА»;

У – цифро-аналоговый преобразователь «диапазон аналогового выходного сигнала напряжения постоянного тока от 0 до 10 В»;

Т – выход для управления внешним твердотельным реле.

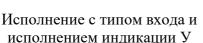
Дополнительный выход (только для типов входа и исполнений индикации У2 и У3):

RS – интерфейс RS-485;

отсутствует – встроенный источник постоянного напряжения 24 В.

Климатическое исполнение (только для типа входа и исполнения индикации У):

отсутствует — стандартное исполнение с температурным диапазоном рабочих условий измерений от минус 20 до плюс 50 °C;


C – исполнение с расширенным температурным диапазоном рабочих условий измерений от минус 40 до плюс 50 °C.

Заводской номер наносится на корпус прибора методом лазерной гравировки в виде цифрового кода.

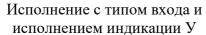
Общий вид приборов представлен на рисунках 2 - 8.

Нанесение знака поверки на приборы в обязательном порядке не предусмотрено. Пломбирование приборов не предусмотрено.

Исполнение с типом входа и исполнением индикации У2

Исполнение с типом входа и исполнением индикации У3

Рисунок 2 — Общий вид измерителей-регуляторов микропроцессорных 2TPM0, 2TPM1, TPM1, TPM10, TPM12 в корпусе типа H


Исполнение с типом входа и исполнением индикации У2

Исполнение с типом входа и исполнением индикации У3

Рисунок 3 — Общий вид измерителей-регуляторов микропроцессорных 2TPM0, 2TPM1, TPM1, TPM10, TPM12 в корпусе типа H2

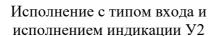
Исполнение с типом входа и исполнением индикации У2

Исполнение с типом входа и исполнением индикации У3

Рисунок 4 – Общий вид измерителей-регуляторов микропроцессорных 2TPM0, 2TPM1, TPM1, TPM10, TPM12 в корпусе типа Щ1

Рисунок 5 – Общий вид измерителей-регуляторов микропроцессорных 2TPM0, 2TPM1, TPM1, TPM10, TPM12 в корпусе типа Щ11

Исполнение с типом входа и исполнением индикации У


Исполнение с типом входа и исполнением индикации У2

Исполнение с типом входа и исполнением индикации У3

Рисунок 6 – Общий вид измерителей-регуляторов микропроцессорных 2TPM0, 2TPM1, TPM1, TPM10, TPM12 в корпусе типа Щ2

Исполнение с типом входа и исполнением индикации У3

Рисунок 7 — Общий вид измерителей-регуляторов микропроцессорных 2TPM0, 2TPM1, TPM1, TPM10, TPM12 в корпусе типа Щ5

Исполнение с типом входа и исполнением инликации У

Исполнение с типом входа и исполнением инликации У2

Исполнение с типом входа и исполнением индикации У3

Рисунок 8 – Общий вид измерителей-регуляторов микропроцессорных 2TPM0, 2TPM1, TPM1, TPM10, TPM12 в корпусе типа Д

Программное обеспечение

Приборы имеют встроенное программное обеспечение (далее – ПО), устанавливаемое в энергонезависимую память при изготовлении, выполняющее функции преобразования электрических сигналов сопротивления, напряжения постоянного тока или силы постоянного тока в значения физической величины. Данное ПО не может быть модифицировано, загружено или прочитано через какой-либо интерфейс.

Конструкция приборов исключает возможность несанкционированного влияния на ПО и измерительную информацию.

ПО является метрологически значимым.

Метрологические характеристики приборов нормированы с учетом влияния ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений — «высокий» в соответствии с рекомендациями Р 50.2.077-2014, данное ПО защищено от преднамеренных изменений с помощью специальных программных средств.

Идентификационные данные ПО приборов приведены в таблицах 1-6.

Таблица 1 – Идентификационные данные ПО измерителей-регуляторов микропроцессорных 2TPM0 в исполнении с типом входа и исполнением индикации У

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	2trm0_v207.hex
Номер версии (идентификационный номер) ПО, не ниже	2.07
Цифровой идентификатор ПО	-

Таблица 2 – Идентификационные данные ПО измерителей-регуляторов микропроцессорных 2TPM1 в исполнении с типом входа и исполнением индикации У

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	2trm1rr_v207.hex
Номер версии (идентификационный номер) ПО, не ниже	2.07
Цифровой идентификатор ПО	-

Таблица 3 – Идентификационные данные ПО измерителей-регуляторов микропроцессорных ТРМ1 в исполнении с типом входа и исполнением индикации У

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	trm1r_v207.hex
Номер версии (идентификационный номер) ПО, не ниже	2.07
Цифровой идентификатор ПО	-

Таблица 4 – Идентификационные данные ПО измерителей-регуляторов микропроцессорных ТРМ10 в исполнении с типом входа и исполнением индикации У

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	trm10s3_v207.hex
Номер версии (идентификационный номер) ПО, не ниже	2.07
Цифровой идентификатор ПО	-

Таблица 5 – Идентификационные данные ПО измерителей-регуляторов микропроцессорных ТРМ12 в исполнении с типом входа и исполнением индикации У

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	trm12_v207.hex
Номер версии (идентификационный номер) ПО, не ниже	2.07
Цифровой идентификатор ПО	-

Таблица 6 – Идентификационные данные ПО измерителей-регуляторов микропроцессорных 2ТРМ0, 2ТРМ1, ТРМ1, ТРМ10, ТРМ12 в исполнениях с типом входа и исполнением индикации У2 и У3

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	ΠO_embSoft_TRM1xx_v0.97.hex	
Номер версии (идентификационный номер) ПО, не ниже	0.97	
Цифровой идентификатор ПО	-	

Метрологические и технические характеристики

Таблица 7 — Метрологические характеристики исполнений приборов с типом входа и исполнением индикации У

и исполнением индикации	У		<u>, </u>
Выходной сигнал датчика (условное обозначение НСХ первичного преобразователя)	Диапазон измерений	Значение единицы младшего разряда	Пределы допускаемой приведенной (к диапазону измерений) основной погрешности, %
1 1	aceparanti conse	укразина по ГОСТ 6	651 2000
	реобразователи сопрот от -50 до +200 °C	од °C	031-2009
Cu 50 (α =0,00426 °C ⁻¹)		· · · · · · · · · · · · · · · · · · ·	
50 M (α=0,00428 °C ⁻¹)	от -180 до +200 °C	0,1; 1,0 °C	
Pt 50 (α=0,00385 °C ⁻¹)	от -200 до +850 °C	0,1; 1,0 °C	
50 Π (α=0,00391 °C ⁻¹)	от -200 до +850 °C	0,1; 1,0 °C	
Cu 100 (α=0,00426 °C ⁻¹)	от -50 до +200 °C	0,1 °C	
$100 \text{ M} (\alpha=0.00428 ^{\circ}\text{C}^{-1})$	от -180 до +200 °C	0,1; 1,0 °C	
Pt 100 (α=0,00385 °C ⁻¹)	от -200 до +850 °C	0,1; 1,0 °C	
100 Π (α =0,00391 °C ⁻¹)	от -200 до +850 °C	0,1; 1,0 °C	
$100 \text{ H} (\alpha = 0.00617 ^{\circ}\text{C}^{-1})$	от -60 до +180 °C	0,1 °C	10.25
Pt 500 (α=0,00385 °C ⁻¹)	от -200 до +850 °C	0,1; 1,0 °C	$\pm 0,\!25$
$500 \Pi (\alpha=0.00391 \text{ °C}^{-1})$	от -200 до +850 °C	0,1; 1,0 °C	
Cu 500 (α=0,00426 °C ⁻¹)	от -50 до +200 °C	0,1 °C	
$500 \text{ M} (\alpha=0.00428 ^{\circ}\text{C}^{-1})$	от -180 до +200 °C	0,1; 1,0 °C	
$500 \text{ H} (\alpha = 0.00617 \text{ °C}^{-1})$	от -60 до +180 °C	0,1 °C	
Cu $1000 (\alpha=0.00426 {}^{\circ}\text{C}^{-1})$	от -50 до +200 °C	0,1 °C	
$1000 \text{ M} (\alpha=0.00428 ^{\circ}\text{C}^{-1})$	от -180 до +200 °C	0,1; 1,0 °C	
Pt 1000 (α =0,00385 °C ⁻¹)	от -200 до +850 °C	0,1; 1,0 °C	
$1000 \Pi (\alpha=0.00391 {}^{\circ}\mathrm{C}^{-1})$	от -200 до +850 °C	0,1; 1,0 °C	
$1000 \text{ H} (\alpha = 0.00617 ^{\circ}\text{C}^{-1})$	от -60 до +180 °C	0,1 °C	
,	ктрические преобразо	ватели по ГОСТ Р 8	3.585-2001
TXK(L)	от -200 до +800 °C	0,1; 1,0 °C	
ТЖК (J)	от -200 до +1200 °C	0,1; 1,0 °C	
THH (N)	от -200 до +1300 °C	0,1; 1,0 °C	
TXA(K)	от -200 до +1360 °C	0,1; 1,0 °C	
ΤΠΠ (S)	от -50 до +1750 °C	0,1; 1,0 °C	
TΠΠ(R)	от -50 до +1750 °C	0,1; 1,0 °C	±0,5
ТПР (В)	от +200 до +1800 °C	0,1; 1,0 °C	
TBP (A-1)	от 0 до +2500 °C	0,1; 1,0 °C	
TBP (A-2)	от 0 до +1800 °C	0,1; 1,0 °C	
TBP (A-3)	от 0 до +1800 °C	0,1; 1,0 °C	
TMK (T)	от -250 до +400 °C	0,1; 1,0 °C	TO 077 0 (011 00
* *	Унифицированные сигналы напряжения и силы постоянного тока по ГОСТ 26.011-80		
Напряжение	0 1 D	01.100	
постоянного тока	от 0 до 1 В	0,1; 1,0 B	10.25
Сила постоянного тока	от 0 до 5 мА	0,1; 1,0 MA	$\pm 0,\!25$
Сила постоянного тока	от 0 до 20 мА	0,1; 1,0 MA	
Сила постоянного тока	от 4 до 20 мА	0,1; 1,0 мА	

Сигналы напряжения постоянного тока			
Напряжение	от -50 до +50 мВ	0,1; 1,0 мВ	±0,25
постоянного тока	01 -30 до +30 мв	0,1, 1,0 MD	±0,23

Таблица 8 – Метрологические характеристики исполнений приборов с типом входа и исполнением индикации У2 и У3

Выходной сигнал			Пределы допускаемой
датчика (условное	Пионором	Duonouno ommuni	приведенной
обозначение НСХ	Диапазон	Значение единицы	(к диапазону измерений)
первичного	измерений	младшего разряда	основной
преобразователя)			погрешности, %
Термоп	реобразователи сопрот		651-2009
Cu 50 (α=0,00426 °C ⁻¹)	от -50 до +200 °C	0,1 °C	
50 M (α=0,00428 °C ⁻¹)	от -180 до +200 °C	0,1; 1,0 °C	
Pt 50 (α =0,00385 °C ⁻¹)	от -200 до +850 °C	0,1; 1,0 °C	
$50 \Pi (\alpha = 0.00391 \text{ °C}^{-1})$	от -200 до +850 °C	0,1; 1,0 °C	
Cu 100 (α =0,00426 °C ⁻¹)	от -50 до 200 °C	0,1 °C	
$100 \text{ M} (\alpha = 0.00428 ^{\circ}\text{C}^{-1})$	от -180 до +200 °C	0,1; 1,0 °C	
Pt 100 (α =0,00385 °C ⁻¹)	от -200 до +850 °C	0,1; 1,0 °C	
$100 \Pi (\alpha = 0.00391 {}^{\circ}\mathrm{C}^{-1})$	от -200 до +850 °C	0,1; 1,0 °C	
$100 \text{ H} (\alpha = 0.00617 \text{ °C}^{-1})$	от -60 до +180 °C	0,1 °C	
Pt 500 (α =0,00385 °C ⁻¹)	от -200 до +850 °C	0,1; 1,0 °C	$\pm 0,\!25$
$500 \Pi (\alpha = 0.00391 \text{ °C}^{-1})$	от -200 до +850 °C	0,1; 1,0 °C	0,20
Cu 500 (α =0,00426 °C ⁻¹)	от -50 до +200 °C	0,1 °C	
$500 \text{ M} (\alpha = 0.00428 ^{\circ}\text{C}^{-1})$	от -180 до +200°C	0,1; 1,0 °C	
$500 \text{ H} (\alpha = 0.00617 \text{ °C}^{-1})$	от -60 до +180 °C	0,1 °C	
Cu $1000 (\alpha = 0.00426 ^{\circ}\text{C}^{-1})$	от -50 до +200 °C	0,1 °C	
$1000 \text{ M} (\alpha=0.00428 ^{\circ}\text{C}^{-1})$	от -180 до +200 °C	0,1; 1,0 °C	
Pt 1000 (α=0,00385 °C ⁻¹)	от -200 до +850 °C	0,1; 1,0 °C	
$1000 \Pi (\alpha=0.00391 {}^{\circ}\mathrm{C}^{-1})$	от -200 до +850 °C	0,1; 1,0 °C	
$1000 \text{ H} (\alpha = 0.00617 ^{\circ}\text{C}^{-1})$	от -60 до +180 °C	0,1 °C	
Термоэл	ектрические преобразо	ватели по ГОСТ Р 8	.585-2001
TXK (L)	от -200 до +800 °C	0,1; 1,0 °C	
ТЖК (Ј)	от -200 до +1200 °C	0,1; 1,0 °C	
THH (N)	от -200 до +1300 °C	0,1; 1,0 °C	
TXA (K)	от -200 до +1360 °C	0,1; 1,0 °C	
ТХКн(Е)	от -200 до +900 °C	0,1 °C	
$T\Pi\Pi$ (S)	от -50 до +1750 °C	0,1; 1,0 °C	$\pm 0,5$
$T\Pi\Pi(R)$	от -50 до +1750 °C	0,1; 1,0 °C	=0,3
TIIP (B)	от +200 до +1800 °C	0,1; 1,0 °C	
TBP (A-1)	от 0 до +2500 °C	0,1; 1,0 °C	
TBP (A-2)	от 0 до +1800 °C	0,1; 1,0 °C	
TBP (A-3)	от 0 до +1800 °C	0,1; 1,0 °C	
TMK (T)	от -250 до +400 °C	0,1; 1,0 °C	

Унифицированные с	игналы напряжения и с	илы постоянного то	ока по ГОСТ 26.011-80
Напряжение			
постоянного тока	от 0 до 1 В	0,001 B	
Сила постоянного тока	от 0 до 5 мА	0,001 мА	±0,25
Сила постоянного тока	от 0 до 20 мА	0,01 мА	
Сила постоянного тока	от 4 до 20 мА	0,01 мА	
Сигналы напряжения постоянного тока			
Напряжение	от -50 до +50 мВ	0,01 мВ	±0,25
постоянного тока	01-30 до 130 мв	0,01 MD	±0,23

Пределы допускаемой приведенной (к диапазону измерений) дополнительной погрешности измерений при изменении температуры окружающей среды от нормальных условий (от +15 до +25 °C включ.) в диапазоне рабочих условий измерений, на каждые 10 °C изменения температуры окружающего воздуха, составляют не более 0,2 от пределов допускаемой приведенной основной погрешности для исполнений приборов с типом входа и исполнением индикации У и не более 0,25 от предела допускаемой основной приведенной погрешности для исполнений приборов с типом входа и исполнением индикации У2 и У3.

Таблица 9 – Метрологические характеристики исполнений приборов с типами выходов И и У

таолица 9 – Метрологические характеристики исполнении приос	ров с типами выходов и и у
Наименование характеристики	Значение
Диапазон преобразований входных сигналов в выходной сигнал напряжения постоянного тока, ${\bf B}^{\ 1)}$	от 0 до 10
Диапазон преобразований входных сигналов в выходной сигнал силы постоянного тока, мА $^{1)}$	от 4 до 20
Пределы допускаемой приведенной (к диапазону преобразований) основной погрешности преобразований входного сигнала в выходной сигнал напряжения и силы постоянного тока, %	±0,5
1) Входными сигналами являются выходные сигналь	ы датчиков в соответствии с
таблицами 7 и 8.	

Пределы допускаемой приведенной (к диапазону преобразований) дополнительной погрешности преобразований при изменении температуры окружающей среды от нормальных условий (от +15 до +25 °C включ.) в диапазоне рабочих условий измерений, на каждые 10 °C изменения температуры окружающего воздуха, составляют не более 0,5 от предела допускаемой приведенной основной погрешности преобразования.

Таблица 10 – Основные технические характеристики

Наименование характеристики	Значение
Нормальные условия измерений:	
- температура окружающей среды, °С	от +15 до +25
- относительная влажность воздуха без конденсации влаги, %	от 30 до 80
- атмосферное давление, кПа	от 84,0 до 106,7
Рабочие условия измерений:	
- относительная влажность воздуха без конденсации влаги	
при температуре окружающего воздуха +35 °C, %, не более	80
- атмосферное давление, кПа	от 84,0 до 106,7

Наименование характеристики	Значение	
- температура окружающей среды, °С:	3.13.1110	
- для исполнения приборов с типом входа и исполнением	от -20 до $+$ 50 $^{1)}$	
индикации У	- 73	
- для исполнений приборов с типом входа и исполнением	от -40 до +55	
индикации У2 и У3	. ,	
Параметры электрического питания:		
- напряжение переменного тока, В:		
- для исполнения приборов с типом входа и исполнением		
индикации У	от 90 до 245 ²⁾	
- для исполнений приборов с типом входа и исполнением		
индикации У2 и У3	от 90 до 264 ²⁾	
- частота переменного тока, Гц	от 47 до 63	
- напряжение постоянного тока, В:		
- для исполнения приборов с типом входа и исполнением	2)	
индикации У	от 20 до 375 ³⁾	
- для исполнений приборов с типом входа и исполнением		
индикации У2 и У3	от 21 до 120 3)	
Масса, кг, не более	1,0	
Габаритные размеры (длина × высота × глубина), мм, не более:		
- для исполнения приборов с типом входа и исполнением	120 107 67	
индикации У и типом корпуса Н	130×105×65	
- для исполнений приборов с типом входа и исполнением	12011262	
индикации У2 и У3 и типом корпуса Н	129×110×69	
- для исполнений приборов с типом корпуса Н2	150×105×35	
- для исполнения приборов с типом входа и исполнением	06~06~65	
индикации У и типом корпуса Щ1	96×96×65	
- для исполнений приборов с типом входа и исполнением	06×06×52	
индикации У2 и У3 и типом корпуса Щ1	96×96×53 96×48×100	
- для исполнений приборов с типом корпуса Щ2	48×48×100 48×48×103	
- для исполнений приборов с типом корпуса Щ5 - для исполнений приборов с типом корпуса Щ11	48×48×103 96×96×49	
	70^70 ^4 7	
- для исполнений приборов с типом входа и исполнением индикации У и типом корпуса Д	90×72×58	
индикации у и типом корпуса д - для исполнений приборов с типом входа и исполнением	90^/2^38	
индикации У2 и У3 и типом корпуса Д	90×88×59	
Средняя наработка на отказ, ч	100000	
Средний срок службы, лет	12	
Среднии срок служоы, лет 12 $^{1)}$ Для климатического исполнения $C-$ от -40 до +50 $^{\circ}C$.		
2) Номинальное значение напряжения питания переменного тока 230 В.		
3) Номинальное значение напряжения питания переменного тока 250 В.		
поминания пополнительного поличения питания постоянного тока 24 р.		

Знак утверждения типа

наносится на титульный лист паспорта и руководства по эксплуатации типографским способом и на маркировочную наклейку или корпус прибора любым технологическим способом.

Комплектность средства измерений

Таблица 11 – Комплектность приборов

Наименование	Обозначение	Количество
Измеритель-регулятор микропроцессорный 2TPM0, 2TPM1 TPM1, TPM10, TPM12	Согласно ТУ 4217-041-46526536-2013	1 шт.
Паспорт и Гарантийный талон	КУВФ.421210.002ПС	1 экз.
Руководство по эксплуатации	КУВФ.421210.002 РЭХ*	1 экз.
*«Х» принимает значения от 1 до 10 в зависимости от исполнения.		

Сведения о методиках (методах) измерений

приведены в разделе 6.1 «Принцип действия» руководства по эксплуатации.

Нормативные и технические документы, устанавливающие требования к измерителямрегуляторам микропроцессорным 2TPM0, 2TPM1, TPM10, TPM12

ГОСТ 26.011-80 «Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные»

ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия»

TУ 4217-041-46526536-2013 «Измерители-регуляторы микропроцессорные 2ТРМ0, 2ТРМ1, ТРМ1, ТРМ10, ТРМ12. Технические условия»

Изготовитель

Общество с ограниченной ответственностью (ООО)

«Производственное Объединение OBEH»

Адрес: 111024, г. Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

Тел.: (495) 221-60-64, факс (495) 728-41-45.

E-mail: support@owen.ru. Web-сайт: http://www.owen.ru/

Испытательный центр

Общество с ограниченной ответственностью «Испытательный центр разработок в области метрологии» (ООО «ИЦРМ»)

Место нахождения и адрес юридического лица: 117546, г. Москва, Харьковский проезд, д.2, этаж 2, пом. I, ком. 35,36

Аттестат аккредитации ООО «ИЦРМ» по проведению испытаний средств измерений в целях утверждения типа N RA.RU.311390 от 18.11.2015 г.